3D Data Capturing and 3D Print in Medical Science

Univ.-Prof. Dr. Ute Schäfer

Research Unit for Experimental Neurotraumatology, Department of Neurosurgery,
Medical University of Graz, Austria

FARO 3D Conference 2017, Rottweil, Germany, April 28, 2017
The „iPRINT“ Project

iPRINT

Implant Printing

Intra-operative manufacturing of personalized, craniofacial implants
State of the Art – Implantation
Implantations of skull bone

Most common Indications

Trauma

Tumor

Stroke
State of the Art: Implant Materials

Autologous Bone

Biocompatibility – *ideal implant*

Best Results: re-implantation after 72 hours

Conservation of the removed bone
e.g. after decompressive craniotomy

- *autoklaved*
- *chemically treated*(Tutoplast®)
- *deep-frozen*

Visible defect
One resorption
Risk for infection
State of the Art: Implant Materials

PMMA (Polymethylmethacrylate), bone cement, z.B. **Palacos**

Additives
- Stabilizers, Softeners, Antioxidants

Fast, exothermal segregation reaction
- Inflammation
- Connection Problems

- Difficulties with intraoperative modelling
- Missing stability; sensitivity for breaking
State of the Art: Implant Materials

PEEK (Polyetheretherketone), *high performance polymer*

- Flexibility comparable with spongy bone
 - X-ray permeability
 - High breaking strength
- Low risk for complications and infections
 - Good healing characteristics
 - Low material fatigue
 - Low liquid storage
Current clinical situation

CLINIC

Tumor (CT Scan) → Surgery → Post-operative CT Scan

Complications

> 11.000 €

5.000-9.000 €

6 WEEKS
decentralized, commercial implant manufacturing
AIM

Centralized, intra-operative 3D-printing of implants

Perfect Fit
No Second Surgery

100,- €
Challenges

Additive Manufacturing Technology (?) for intra-operative Implant Generation

Technology must be suitable for use in or close to the operation theatre

SLS of powders FDM/FFF – polymer filaments
Challenges

Additive Manufacturing Technology (?) for intra-operative Implant Generation

High Performance Polymer (PEEK)
Melting point approx. 450 °C

Material – Medical Approved PEEK

FDM/FFF – polymer filaments
Challenges

Additive Manufacturing Technology (?) for intra-operative Implant Generation

- Fast manufacturing < 3hrs
- Precise patient specific implant generation

FDM/FFF – polymer filaments
Challenges

Fast translation of CT data into stl files for printing (< 1 hr)
Challenges

Biological and Mechanical Properties of Additive Manufactured Implant

Medical Approved PEEK Implant – only for Milling Process

Filament generation and melting during additive manufacturing might influence polymer properties

Mechanical properties ≥ cranial bone

Biocompatibility – integration without inflammation
Aim: Development of a 3D-printer for clinical applications

Clinical / Experimental Studies
Verification of Process-, Software- and Material Development

Development of Manufacturing Process (3D-Printing)

Software-Development

Material-Development

Hage Sondermaschinenbau GmbH & CoKG

Computer Graphics and Vision, Graz University of Technology

Chair for Polymer Processing, Montanuniversitaet Leoben

RU for Exp. Neurotraumatology
Department of Neurosurgery
Medical University of Graz

External/commercial delayed
not patient-specific
Titanium/PEEK

Internal/central simultaneous
personalized/patient specific
high performance

Medizinische Universität Graz, Universitätsplatz 3, A-8010 Graz, www.meduni-graz.at
Images / Software

3D-Modelling (Software Development)
Institute of Computer Graphics and Vision, Graz University of Technology

- Segmentation:

Separate brain tissue from bone tissue (medical experience)
Images / Software

3D-Modelling (Software Development)
Institute of Computer Graphics and Vision, Graz University of Technology

- CT patient data were used for the development of a new software
- Software development is based on mirroring the intact part of the cranium:
 - fast definition of cranium curvature
 - semi-automated capping of lesion

Front View | Semi-automated Capping of Lesion

20–45 mins.
Software

Disadvantages

- Patient needs two CT-Scans
- Segmentation process needs medical experience – time limiting step
- Depending on lesion location mirroring of cranium is not always possible
- Speed of development of 3D model is dependent on expertise of experimentator/technician/surgeon
Potential solution

Laser Scanning of cranium/lesion

- No second CT Scan necessary
- No mirroring
- No segmentation
- Very fast generation of 3D model (seconds)
- Easy to handle for surgeons
- No direct contact with patient – easy sterilisation measures
Potential Challenges

Laser Scanning of Cranium

Scanning of a lesion

Filling of the lesion (implant generation) requires 3D modelling/ specific software

There are liquids such as blood in the wound
Preliminary Results

- Different optical and tactile measurement options have been tested at FARO using a pig head provided by the Medical University of Graz.

Pig head with cut-out bone lesion

CT-image of the pig head as a reference for the scanning tools

Data provided by FARO Europe, Dr. Matthias Wolke
Preliminary Results

Scanning of the upper and lower edge of the lesion rim defines:
- dimension of the implant
- curvature of the cranium / bending of the implant

Data provided by FARO Europe, Dr. Matthias Wolke
Four different scanning methods were tested by FARO

- Freestyle X
- Unnamed Prototype
- Cobalt
- Scan Arm
Preliminary Results

• Only two of the scanning options were able to record the necessary data for modelling an implant to fill the lesion

• Cobalt

CT reference Mesh from Cobalt data Cobalt pointcloud

Data provided by FARO Europe, Dr. Matthias Wolke
Preliminary Results

• Scan Arm

Data provided by FARO Europe, Dr. Matthias Wolke
Preliminary Results (Printing)

CT Reference

Mesh from Cobalt data
Challenge for FARO Scanning

• Reality
Mechanical Testing of printed PEEK implants

Mechanical Analysis of the 3D-printed implants
Chair of Polymer Processing, Montanuniversitaet Leoben

- Comparison of the mechanical performance of human bone, 3D-printed PEEK and 3D-printed PP

- Maximal weight on the samples, before they break:

 - Human Bone ~ 32 kg
 - 3D-printed PEEK ~ 130 kg
 - 3D-printed PP ~ 50 kg
Biocompatibility (in vivo testing)

Analysis of inflammatory reactions
Research Unit for Experimental Neurotraumatology

Implantation of a 3D-printed PEEK implant

Absolutely custom-fit!

Immunhistochemical stainings for CD4 (T-cell-Marker) and CD68 (Macrophage-Marker); no differences between healthy animals (left) and animals with PEEK implants after 5 days and 2 weeks (middle and right) could be found.
Summarize

3D FFF- Printer for High Performance Polymers

PEEK Filaments (high quality)

Software (CT→STL files)

Imaging / Laser Scanning

Mechanical Properties / Biocompatibility

CLINIC
Advantages of a centralized 3D-printer in the clinic

COSTS
- No second surgery necessary
- Shorter hospital stays
- Lower implant costs

QUALITY
- Patient-specific implants
- Biologisation
- Biofunctionalization
- Fitting accuracy

TIME
- Intraoperative manufacturing
- No post-treatments necessary
Future

<table>
<thead>
<tr>
<th>Implants</th>
<th>Protheses</th>
<th>Tools</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chest-wall reconstruction by compound 3D-printed implants

PI: Professor Freyja Smolle-Jüttner, Division for Thoracic and Hyperbaric Surgery

Current-Situation

X-Ray after Operation

X-Ray after 2 years:
Complete deformation of implant
Development Clinical Process Chain

IMAGING – 3D Modelling

MATERIAL SELECTION

3D-PRINTING

MATERIAL MODIFICATION

CLINICAL IMPLEMENTATION
COMET K-Project

• Aim of the Project

CAMed
Clinical additive manufacturing for medical applications
CAMed: Planned Areas/Projects

Area 1
ADDITIVE MANUFACTURING OF PERMANENT IMPLANTS (CAL, TAL)

1.1: Additive Manufacturing for Rib Replacement

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Former</td>
<td>(Arburg, Polymere)</td>
</tr>
<tr>
<td>Laser Sintering</td>
<td>(LSS, Metall)</td>
</tr>
</tbody>
</table>

1.2: On demand individualized plates for complex trauma osteosynthesis

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Sintering</td>
<td>(LSS, Metall)</td>
</tr>
</tbody>
</table>

1.3: Development of advanced imaging methods, software and coating for intra-operative additive manufacturing of PEEK-implants for cranial defects

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFF (Hage, Polymere)</td>
<td></td>
</tr>
<tr>
<td>FARO</td>
<td></td>
</tr>
</tbody>
</table>

1.4: Additive Manufacturing for Orthodontic Implants

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFF (Hage, Polymere)</td>
<td></td>
</tr>
<tr>
<td>Free Former (Arburg, Polymere)</td>
<td></td>
</tr>
<tr>
<td>Laser Sintering</td>
<td>(LSS, Metall)</td>
</tr>
</tbody>
</table>

Area 2
ADDITIVE MANUFACTURING OF BIODEGRADABLE IMPLANTS/SCAFFOLDS (CAL, TAL)

2.1: Bioreposable scaffolds for the treatment of critical size defects in orthopaedic and trauma surgery for children

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Former</td>
<td>(Arburg, Polymere)</td>
</tr>
<tr>
<td>Stereolithographie</td>
<td>(Lithoz, Keramik)</td>
</tr>
</tbody>
</table>

2.2: Bioreposable implants for the treatment of cranial lesions for children

<table>
<thead>
<tr>
<th>Technique</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Former</td>
<td>(Arburg, Polymere)</td>
</tr>
<tr>
<td>Stereolithographie</td>
<td>(Lithoz, Keramik)</td>
</tr>
</tbody>
</table>
Thank you for your attention